翰林提供学术活动、国际课程、科研项目一站式留学背景提升服务!
400 888 0080
首页
国际少培课程
美国AMC8辅导课程
美国AMC8数学竞赛
校内同步培优课程
Math Explorer课程
青少年国际竞赛汇总
国际课程
A-Level课程辅导
IB课程辅导
AP课程辅导
IGCSE课程辅导
美高课程辅导
美高学分项目
国际竞赛
竞赛真题资料
理科国际竞赛
商科国际竞赛
STEM科创竞赛
文社科国际竞赛
丘成桐中学生科学奖
暑期大学先修课
标化考试
牛剑G5笔试辅导
美国SAT考试
托福TOEFL考试
雅思IELTS考试
TARA考试
美国SSAT考试
小托福TOEFL JUNIOR®考试
热门资讯
学校动态
赛事动态
课程动态
关于我们
学员奖项
2024-2025年度奖项
2022-2023年度奖项
2020-2021年度奖项
翰林导师
加入我们
商务合作
Home
»
国际课程
»
A-level课程
»
Details
CIE A Level Maths: Pure 3复习笔记1.2.2 Factor & Remainder Theorem
Category:
A-level课程
,
教材笔记
,
福利干货
Date: 2022年8月19日 下午12:58
Factor Theorem
What is the factor theorem?
The factor theorem is a very useful result about polynomials
A
polynomial
is an algebraic expression consisting of a finite number of terms, with non-negative integer indices only
At A level you will most frequently use the factor theorem as a way to simplify the process of factorising polynomials
What do I need to know about the factor theorem?
For a polynomial
f(
x
)
the factor theorem states that:
If
f(
p
) = 0
, then
(
x
-
p
)
is a factor of
f(
x
)
AND
If
(
x
-
p
)
is a factor of
f(
x
)
, then
f(
p
) = 0
Exam Tip
In an exam, the values of
p
you need to find that make
f(
p
) = 0
are going to be integers close to zero.
Try
p
=
1 and -1 first, then 2 and -2, then 3 and -3.
It is very unlikely that you'll have to go beyond that.
Worked Example
Remainder Theorem
What is the remainder theorem?
The
factor
theorem
is actually a special case of the more general
remainder
theorem
The
remainder
theorem
states that when the polynomial f(x) is divided by (x - a) the remainder is f(a)
You may see this written formally as f(x) = (x - a)Q(x) + f(a)
In
polynomial
division
Q
(x) would be the
result
(at the top) of the division (the
quotient
)
f(a) would be the
remainder
(at the bottom)
(x - a) is called the
divisor
In the case when f(a) = 0, f(x) = (x - a)Q(x) and hence (x - a) is a factor of f(x)– the
factor
theorem
!
How do I solve problems involving the remainder theorem?
Worked Example
Exam Tip
Exam questions will use formal mathematical language which can make factor and remainder theorem questions sound more complicated than they are.
Ensure you are familiar with the various terms from these revision notes
转载自savemyexams
Previous post: CIE A Level Maths: Pure 3复习笔记1.2.1 Polynomial Division
Next post: CIE A Level Maths: Pure 3复习笔记1.2.3 Factorisation
国际竞赛真题资源免费领取
美高学分项目重磅来袭!立即了解
最新发布
免费上哈佛!哈佛大学免费开放 100 + 公开课!附超详细暑期选课指南!
2025 IPsyO心理学奥赛落幕!深度解析:革新赛制与前沿考点!
历史性突破!IEO经济奥赛中国队获全球第三创近五年新高,翰林学员摘金夺银!
AP课程含金量|科目信息 附翰林AP学霸分享会
USACO计算机竞赛备考建议|竞赛内容 附翰林USACO体验课
USABO生物竞赛含金量|难度分析 附翰林USABO培训班
AMC10数学竞赛难度分析|竞赛知识点 附翰林AMC10培训班
AP课程大考学霸分享5分秘籍!翰林独家!
热门标签
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
欧几里得数学竞赛
Physics Bowl
袋鼠数学竞赛
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中学科学奖
欧几里得
UKChO
HiMCM美国高中数学建模竞赛
SIC
Euclid
© 2025. All Rights Reserved.
沪ICP备2023009024号-1
国际竞赛
了解背提项目
国际课程
商务合作
课程试听
Go to top