翰林提供学术活动、国际课程、科研项目一站式留学背景提升服务!
400 888 0080
首页
国际少培课程
美国AMC8辅导课程
美国AMC8数学竞赛
校内同步培优课程
Math Explorer课程
青少年国际竞赛汇总
国际课程
A-Level课程辅导
IB课程辅导
AP课程辅导
IGCSE课程辅导
美高课程辅导
美高学分项目
国际竞赛
竞赛真题资料
理科国际竞赛
商科国际竞赛
STEM科创竞赛
文社科国际竞赛
丘成桐中学生科学奖
标化考试
牛剑G5笔试辅导
美国SAT考试
托福TOEFL考试
雅思IELTS考试
美国SSAT考试
小托福TOEFL JUNIOR®考试
热门资讯
学校动态
赛事动态
课程动态
关于我们
学员奖项
2024-2025年度奖项
2022-2023年度奖项
2020-2021年度奖项
翰林导师
加入我们
商务合作
Home
»
国际课程
»
IB课程
»
Details
IB DP Maths: AA HL复习笔记3.10.5 Shortest Distances with Lines
Category:
IB课程
,
教材笔记
,
福利干货
Date: 2022年7月12日 下午6:00
Shortest Distance Between a Point and a Line
How do I find the shortest distance from a point to a line?
The shortest distance from any point to a line will always be the
perpendicular
distance
Note that the
shortest distance between the point and the line is sometimes referred to as the
length of the perpendicular
How do we use the vector product to find the shortest distance from a point
to a line?
The vector product can be used to find the shortest distance from any point to a line on a 2-dimensional plane
Given a point, P, and a line
r
=
a
+ λ
b
Where
A
is a point on the line
This is
not
given in the formula booklet
Exam Tip
Column vectors can be easier and clearer to work with when dealing with scalar products.
Worked Example
Shortest Distance Between Two Lines
How do we find the shortest distance between two parallel lines?
Two
parallel
lines will never intersect
The shortest distance between two
parallel lines
will be the
perpendicular distance
between them
This is
not
given in the formula booklet
How do we find the shortest distance from a given point on a line to another line?
The shortest distance from any point on a line to another line will be the
perpendicular
distance from the point to the line
If the angle between the two lines is known or can be found then right-angled trigonometry can be used to find the perpendicular distance
Alternatively, the equation of the line can be used to find a general coordinate and the steps above can be followed to find the shortest distance
How
do we find the shortest distance between two skew lines
?
Two
skew
lines are not parallel but will never intersect
The shortest distance between two
skew lines
will be perpendicular to
both
of the lines
This will be at the point where the two lines pass each other with the perpendicular distance where the point of intersection would be
The
vector product
of the two direction vectors can be used to find a vector in the direction of the shortest distance
The shortest distance will be a vector
parallel
to the vector product
Exam Tip
Exam questions will often ask for the shortest, or minimum, distance within vector questions
If you’re unsure start by sketching a quick diagram
Sometimes calculus can be used, however usually vector methods are required
Worked Example
转载自savemyexams
Previous post: AQA A Level Physics复习笔记7.7.1 Charge & Discharge Graphs
Next post: IB DP Maths: AA HL复习笔记3.11.1 Vector Equations of Planes
国际竞赛真题资料-点击免费领取!
美高学分项目重磅来袭!立即了解
最新发布
AMC数学竞赛到底是什么?如何高效备考拿高分?
AMC竞赛的价值:历经波折后,它是否仍值得参与?
2025-2026赛季AMC竞赛报名入口在哪?报名流程及最新考纲详解
到底为什么要参加USACO计算机竞赛?揭秘其价值与优势
2025年BPHO竞赛怎么报名?全攻略与备考干货速递!
2025年BPhO竞赛新规是什么?如何高效备考规划?
2026年托福考试重大改革有哪些变化?6分制、自适应模式全解析
如何应对美国综合性大学的语言成绩要求?最新数据与实用指南
热门标签
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
欧几里得数学竞赛
Physics Bowl
袋鼠数学竞赛
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中学科学奖
欧几里得
UKChO
HiMCM美国高中数学建模竞赛
SIC
Euclid
© 2025. All Rights Reserved.
沪ICP备2023009024号-1
国际竞赛
了解背提项目
国际课程
商务合作
课程试听
Go to top