答案解析请参考文末
Isabella's house has 
 bedrooms. Each bedroom is 
 feet long, 
 feet wide, and 
 feet high. Isabella must paint the walls of all the bedrooms. Doorways and windows, which will not be painted, occupy 
 square feet in each bedroom. How many square feet of walls must be painted?
![]()
Define the operation 
 by 
 What is ![]()
![]()
A college student drove his compact car 
 miles home for the weekend and averaged 
 miles per gallon. On the return trip the student drove his parents' SUV and averaged only 
 miles per gallon. What was the average gas mileage, in miles per gallon, for the round trip?
![]()
The point 
 is the center of the circle circumscribed about 
 with 
 and 
. What is the degree measure of ![]()
![]()
In a certain land, all Arogs are Brafs, all Crups are Brafs, all Dramps are Arogs, and all Crups are Dramps. Which of the following statements is implied by these facts?

The 
 
 
 will be scored by awarding 
 points for each correct response, 
 points for each incorrect response, and 
 points for each problem left unanswered. After looking over the 
 problems, Sarah has decided to attempt the first 
 and leave only the last 
 unanswered. How many of the first 
 problems must she solve correctly in order to score at least 
 points?
![]()
All sides of the convex pentagon 
 are of equal length, and 
 What is the degree measure of ![]()
![]()
On the trip home from the meeting where this AMC10 was constructed, the Contest Chair noted that his airport parking receipt had digits of the form 
 where 
 and 
 was the average of 
 and 
 How many different five-digit numbers satisfy all these properties?
![]()
A cryptographic code is designed as follows. The first time a letter appears in a given message it is replaced by the letter that is 
 place to its right in the alphabet (assuming that the letter 
 is one place to the right of the letter 
). The second time this same letter appears in the given message, it is replaced by the letter that is 
 places to the right, the third time it is replaced by the letter that is 
 places to the right, and so on. For example, with this code the word "banana" becomes "cbodqg". What letter will replace the last letter 
 in the message![]()
![]()
Two points 
 and 
 are in a plane. Let 
 be the set of all points 
 in the plane for which 
 has area 
 Which of the following describes ![]()
![]()
A circle passes through the three vertices of an isosceles triangle that has two sides of length 
 and a base of length 
 What is the area of this circle?
![]()
Tom's age is 
 years, which is also the sum of the ages of his three children. His age 
 years ago was twice the sum of their ages then. What is ![]()
![]()
Two circles of radius 
 are centered at 
 and at 
 What is the area of the intersection of the interiors of the two circles?
![]()
Some boys and girls are having a car wash to raise money for a class trip to China. Initially 
 of the group are girls. Shortly thereafter two girls leave and two boys arrive, and then 
 of the group are girls. How many girls were initially in the group?
![]()
The angles of quadrilateral 
 satisfy 
 What is the degree measure of 
 rounded to the nearest whole number?
![]()
A teacher gave a test to a class in which 
 of the students are juniors and 
 are seniors. The average score on the test was 
 The juniors all received the same score, and the average score of the seniors was 
 What score did each of the juniors receive on the test?
![]()
Point 
 is inside equilateral 
 Points 
 and 
 are the feet of the perpendiculars from 
 to 
 and 
 respectively. Given that 
 and 
 what is ![]()
![]()
A circle of radius 
 is surrounded by 
 circles of radius 
 as shown. What is 
?
![[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(7pt)); dotfactor=4; real r1=1, r2=1+sqrt(2); pair A=(0,0), B=(1+sqrt(2),1+sqrt(2)), C=(-1-sqrt(2),1+sqrt(2)), D=(-1-sqrt(2),-1-sqrt(2)), E=(1+sqrt(2),-1-sqrt(2)); pair A1=(1,0), B1=(2+2sqrt(2),1+sqrt(2)), C1=(0,1+sqrt(2)), D1=(0,-1-sqrt(2)), E1=(2+2sqrt(2),-1-sqrt(2)); path circleA=Circle(A,r1); path circleB=Circle(B,r2); path circleC=Circle(C,r2); path circleD=Circle(D,r2); path circleE=Circle(E,r2); draw(circleA); draw(circleB); draw(circleC); draw(circleD); draw(circleE); draw(A--A1); draw(B--B1); draw(C--C1); draw(D--D1); draw(E--E1); label("$1$",midpoint(A--A1),N); label("$r$",midpoint(B--B1),N); label("$r$",midpoint(C--C1),N); label("$r$",midpoint(D--D1),N); label("$r$",midpoint(E--E1),N); [/asy]](https://latex.artofproblemsolving.com/6/b/8/6b83570902439de3661af1cf5b186d453fed927f.png)
The wheel shown is spun twice, and the randomly determined numbers opposite the pointer are recorded. The first number is divided by 
 and the second number is divided by 
 The first remainder designates a column, and the second remainder designates a row on the checkerboard shown. What is the probability that the pair of numbers designates a shaded square?
![[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; real r=2; pair O=(0,0); pair A=(0,2), A1=(0,-2); draw(A--A1); pair B=(sqrt(3),1), B1=(-sqrt(3),-1); draw(B--B1); pair C=(sqrt(3),-1), C1=(-sqrt(3),1); draw(C--C1); path circleO=Circle(O,r); draw(circleO); pair[] ps={O}; dot(ps); label("$6$",(-0.6,1)); label("$1$",(0.6,1)); label("$2$",(0.6,-1)); label("$9$",(-0.6,-1)); label("$7$",(1.2,0)); label("$3$",(-1.2,0)); label("$pointer$",(-4,0)); draw((-5.5,0.5)--(-5.5,-0.5)--(-3,-0.5)--(-2.5,0)--(-3,0.5)--cycle); fill((4,0)--(4,1)--(5,1)--(5,0)--cycle,gray); fill((6,2)--(6,1)--(5,1)--(5,2)--cycle,gray); fill((6,0)--(6,-1)--(5,-1)--(5,0)--cycle,gray); fill((6,0)--(6,1)--(7,1)--(7,0)--cycle,gray); fill((4,-1)--(5,-1)--(5,-2)--(4,-2)--cycle,gray); fill((6,-1)--(7,-1)--(7,-2)--(6,-2)--cycle,gray); draw((4,2)--(7,2)--(7,-2)--(4,-2)--cycle); draw((4,1)--(7,1)); draw((4,0)--(7,0)); draw((4,-1)--(7,-1)); draw((5,2)--(5,-2)); draw((6,2)--(6,-2)); label("$1$",midpoint((4,-1)--(4,-2)),W); label("$2$",midpoint((4,0)--(4,-1)),W); label("$3$",midpoint((4,1)--(4,0)),W); label("$4$",midpoint((4,2)--(4,1)),W); label("$1$",midpoint((4,-2)--(5,-2)),S); label("$2$",midpoint((5,-2)--(6,-2)),S); label("$3$",midpoint((7,-2)--(6,-2)),S); [/asy]](https://latex.artofproblemsolving.com/d/1/6/d16f5082e7ba12a9e32d1bd5aad7b6620c1985ae.png)
A set of 
 square blocks is arranged into a 
 square. How many different combinations of 
 blocks can be selected from that set so that no two are in the same row or column?
![]()
Right 
 has 
 and 
 Square 
 is inscribed in 
 with 
 and 
 on 
 on 
 and 
 on 
 What is the side length of the square?
![]()
A player chooses one of the numbers 
 through 
. After the choice has been made, two regular four-sided (tetrahedral) dice are rolled, with the sides of the dice numbered 
 through 
 If the number chosen appears on the bottom of exactly one die after it has been rolled, then the player wins 
 dollar. If the number chosen appears on the bottom of both of the dice, then the player wins 
 dollars. If the number chosen does not appear on the bottom of either of the dice, the player loses 
 dollar. What is the expected return to the player, in dollars, for one roll of the dice?
![]()
A pyramid with a square base is cut by a plane that is parallel to its base and 
 units from the base. The surface area of the smaller pyramid that is cut from the top is half the surface area of the original pyramid. What is the altitude of the original pyramid?
![]()
Let 
 denote the smallest positive integer that is divisible by both 
 and 
 and whose base-
 representation consists of only 
's and 
's, with at least one of each. What are the last four digits of ![]()
![]()
How many pairs of positive integers 
 are there such that 
 and 
 have no common factors greater than 
 and
is an integer?
![]()
Therefore, the measure of ![[asy] unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(9pt)); dotfactor=4; real r1=1, r2=2, r3=3, r4=4; pair O1=(0,0), O2=(0,-0.5), O3=(0,-1), O4=(0,-1.5); path circleA=Circle(O1,r1); draw(circleA); path circleB=Circle(O2,r2); draw(circleB); path circleC=Circle(O3,r3); draw(circleC); path circleD=Circle(O4,r4); draw(circleD); label("$Crups$",(0,-.5)); label("$Dramps$",(0,-2)); label("$Arogs$",(0,-3.5)); label("$Brafs$",(0,-5)); [/asy]](https://latex.artofproblemsolving.com/4/f/7/4f789d67c624d86c7eaf0debff6651106b4c62a0.png)
The number of questions she answers correctly has to be a whole number, so round up to get ![[asy] unitsize(1.5cm); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair A=(0,2), B=(0,0), C=(2,0), D=(2+sqrt(3),1), E=(2,2); draw(A--B--C--D--E--cycle); draw(E--C,gray); draw(rightanglemark(B,A,E)); draw(rightanglemark(A,B,C)); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,E); label("$E$",E,NE); [/asy]](https://latex.artofproblemsolving.com/b/1/a/b1adac4a39fceaa691b5d5346eee30cd5e1094fc.png)
Let 
 have vertex 
 and center 
, with foot of altitude from 
 at 
.
![[asy] import olympiad; pair B=(0,0), C=(2,0), A=(1,3), D=(1,0); pair O=circumcenter(A,B,C); draw(A--B--C--A--D); draw(B--O--C); draw(circumcircle(A,B,C)); dot(O); label("(A)",A,N); label("(B)",B,S); label("(C)",C,S); label("(D)",D,S); label("(O)",O,W); label("(r)",(O+A)/2,SE); label("(r)",(O+B)/2,N); label("(h)",(O+D)/2,SE); label("(3)",(A+B)/2,NW); label("(1)",(B+D)/2,N); [/asy]](https://latex.artofproblemsolving.com/d/d/6/dd6654d76ebcb5aa78bf644545d9639c8fccd53a.png)
Substituting and solving gives 
. Then the area of the circle is 
.
By 
 (or we could use 
 and Heron's formula),
and the answer is ![]()
Alternatively, by the Extended Law of Sines,
Answer follows as above.
Extend segment 
 to 
 on Circle 
.
![[asy] import olympiad; pair B=(0,0), C=(2,0), A=(1,3), D=(1,0), R=(1,-0.35); pair O=circumcenter(A,B,C); draw(A--B--C--A--D--R--C); draw(B--O--C); draw(circumcircle(A,B,C)); dot(O); label("(A)",A,N); label("(B)",B,S); label("(C)",C,S); label("(D)",D,S); label("(O)",O,W); label("(R)",R,S); label("(r)",(O+A)/2,SE); label("(r)",(O+R)/2,SE); label("(3)",(A+C)/2,NE); label("(1)",(C+D)/2,N); [/asy]](https://latex.artofproblemsolving.com/7/6/0/7609b3287774915ebf4e80694297138491851a07.png)
 is similar to 
, so
which gives us
therefore![]()
The area of the circle is therefore 
First, we extend 
 to hit the circle at ![]()
![[asy] import olympiad; pair B=(0,0), C=(2,0), A=(1,3), D=(1,0), E=(1,-(8^0.5)/8); pair O=circumcenter(A,B,C); draw(A--B--C--A--E); draw(circumcircle(A,B,C)); dot(O); dot(D); dot(B); dot(C); dot(A); dot(E); label("$A$",A,N); label("$B$",B,S); label("(C)",C,S); label("$D$",D,NE); label("$O$",O,W); label("$E$",E,S); label("$3$",(A+B)/2,NW); label("$1$",(B+D)/2,N); [/asy]](https://latex.artofproblemsolving.com/3/1/5/315635f0b6afac6eba65f160b4765f8a089b242a.png)
Another possible solution is to plot the circle and triangle on a graph with the circle having center (0,0). Let the radius of the circle = 
. Let the distance between origin and base of triangle = 
.
1 + a^2 = r^2 r + a = 2sqrt(2) a = (2)sqrt(2) - r 9 - (4r)sqrt(2) = 0 r = ((9)sqrt(2))/8 πr^2 = 81π/32

The number of girls is 
You can express the line connecting the centers of an outer circle and the inner circle in two different ways. You can add the radius of both circles to get 
 You can also add the radius of two outer circles and use a 
 triangle to get 
 Since both representations are for the same thing, you can set them equal to each other.
![]()
You can solve this problem by setting up a simple equation with the Pythagorean Theorem. The hypotenuse would be a segment that includes the radius of two circles on opposite corners and the diameter of the middle circle. This results in a segment of length 
. The two legs are each the length between the centers of two large, adjacent circles, thus 
. Using the Pythagorean Theorem:
When dividing each number on the wheel by 
 the remainders are 
 and 
 Each column on the checkerboard is equally likely to be chosen.
When dividing each number on the wheel by 
 the remainders are 
 and ![]()
The probability that a shaded square in the 
st or 
rd row of the 
st or 
rd column is chosen is![]()
The probability that a shaded square in the 
nd or 
th row of the 
nd column is chosen is![]()
Add those two together and you get![]()
Alternatively, we may analyze this problem a little further.
First, we isolate the case where the rows are numbered 1 or 2. Notice that as listed before, the probability for picking a shaded square here is
because the column/row probabilities are the same, with the same number of shaded and non-shaded squares
Next we isolate the rows numbered 3 or 4. Note that the probability of picking the rows is same, because of our list up above. The columns, of course, still have the same probability. Because the number of shaded and non-shaded squares are equal, we have
Combining these we have a general probability of![]()
Once we choose our three squares, we will have occupied three separate columns 
 and three separate rows. There are 
 ways to choose these rows and columns.
There are 
 ways to assign the square in column 
 to a row, 
 ways to assign the square in column 
 to one of the remaining two rows, and poor square in column C doesn't get to choose. ![]()
In total, we have
which totals out to 
.

There are many similar triangles in the diagram, but we will only use 
 If 
 is the altitude from 
 to 
 and 
 is the sidelength of the square, then 
 is the altitude from 
 to 
 By similar triangles,
Find the length of the altitude of 
 Since it is a right triangle, the area of 
 is ![]()
The area can also be expressed as 
 so ![]()
Substitute back into ![]()
![]()
Let 
 be the side length of the inscribed square. Note that 
.
Then we can setup the following ratios:
![]()
![]()
But then ![]()
For reference, when given two numbers a and b, 
 means that 
 is divisible by 
*
Getting common denominators, we have to find coprime 
 such that 
. b is divisible by 3 because 14 is not a multiple of three in the equation, so b must be so balance it and make them integers. Since 
 and 
 are coprime, 
. Similarly, 
. However, 
 cannot be 
 as 
 only has solutions when 
. Therefore, 
 and 
. Checking them all (Or noting that 
 is the smallest answer choice), we see that they work and the answer is 
.
Let 
. We can then write the given expression as 
 where 
 is an integer. We can rewrite this as a quadratic, 
. By the Quadratic Formula, 
. We know that 
 must be rational, so 
 must be a perfect square. Let 
. Then, 
. The factors pairs of 
 are 
 and 
, 
 and 
, 
 and 
, and 
 and 
. Only 
 and 
 and 
 and 
 give integer solutions, 
 and 
 and 
 and 
, respectively. Plugging these back into the original equation, we get 
 possibilities for 
, namely 
 and 
.
以上解析方式仅供参考
学术活动报名扫码了解!免费领取历年真题!

© 2025. All Rights Reserved. 沪ICP备2023009024号-1